Effect of Ground Guard Fence with Via and Ground Slot on Radiated Emission in Multi-Layer Digital Printed Circuit Board.

Heeseok Lee¹, Jonghoon Kim¹, Seungyoung Ahn¹, Jung-Gun Byun¹, Deog-Soo Kang², Cheol-Seung Choi², Hae-Jin. Hwang², and Joungho Kim³

1) Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology
373-1 Yusong, Kusong, Taejon 305-701, Korea, Tel) +82-42-869-5458, Fax) +82-42-869-8058
E-mail) heeslee@eceinfo.kaist.ac.kr, joungho@ee.kaist.ac.kr

2) System R&D Group, Computer System Division, Digital Media Business, Samsung Electronics Co., Ltd.
Suwon, Kyungki, Korea, E-mail hjhwang@comm.samsung.co.kr

Abstract: In high-speed digital printed circuit board (PCB), the ground guard fence is often used to reduce the radiated emission and the crosstalk. Moreover, it is quite useful for the presence of the ground slot under the signal trace to avoid the reflection and the radiated emission. In this paper, the effects of the guard fence are studied by experimental measurement and numerical electromagnetic simulation. It is found that the ground guard fence acts efficiently as the shielding wall against the signal trace, which results in the significant reduction of the radiated emission. Also, its inherent low radiation property works well at presence of the ground slot under the signal trace.

Introduction

Recently, increased speed and density of high-performance digital circuits and printed circuit boards (PCB) have presented more challenges to circuit and PCB designers due to electromagnetic radiated emission problems. Microstrip line and stripline structures in the high-speed multi-layer PCB are already known well not to be perfect shielded transmission line configuration.[1] Especially, noticeable radiated emission may occur at the microstrip line under the very short switching time of the digital circuits, which becomes one of the primary EMI sources of the PCB. Moreover, when the ground slot is present under the signal trace, large amount of reflection and radiated emission are generated due to the impedance discontinuities of the signal trace. Usually, the ground slot is implemented in the multi-layer PCB, to partition the ground plane and to isolate the ground noises.

In this paper, we have invested, experimentally and numerically, the effect of the ground guard fence and the attached vias for the suppression of the radiated emission from the microstrip line structures. The ground guard fence adjacent to the signal trace with the grounded vias provides the effective grounded wall to the microstrip line structure. The ground guard fence concentrates the field near the signal trace. In the ground guard fence configuration, the grounded vias play a key role, which significantly block the leaky-wave mode propagating through the dielectric substrate, PCB. Together with the grounded vias, the ground guard fence obstructs the surface-wave excitation, which propagates along the top surface of the dielectric substrate. The condensed field propagating through the microstrip line fenced with the ground guard fence with grounded vias reduces the coupling and the radiated emission. So far, the ground guard fence has been studied with respect to the crosstalk noise suppression and the noise isolation, but the effects on the radiated emission has not been studied yet. [2,3] Especially, this study has put more emphasis on the effect of the ground guard fence for the presence of the ground slot.

Measurement & Simulation

Test multi-layer PCB’s were designed with the varied spacing (S) between the signal trace and the ground fence, and with the varied pitch (d) of the via. Also the additional test PCB’s were designed having the slots on the ground plane. For the case of the ground slot, the effect of the ground fence and the grounded via was also evaluated. The radiated emission power was calculated using the method of moment (MoM) simulation for the test structures, while the radiated emission measurement was conducted using a TEM cell (shown in Fig. 2) and an anechoic chamber. The structure of the ground guard fence is illustrated in Figure 1, and the dimensions of the test PCB are listed in Table 1. The simulated and the measured radiation spectrum from the test microstrip line on the PCB are presented in Fig 3 – Fig. 6.
Figure 2 illustrates the experiment setup for the measurement of the radiated power from the microstrip trace on PCB. A TEM cell is employed in this research study. The topside of the PCB is mounted in the TEM cell. Port 2 of a network analyzer is connected to one end of the microstrip line, where the other end of the microstrip line is terminated by 50 ohm. Port 1 of the network analyzer is connected to one of the terminations of the TEM cell. In this configuration, the network analyzer feeds electromagnetic signal to the microstrip line on the test PCB through port 2. The shielding effectiveness of the used TEM-cell is larger than 80dB below 1 GHz. Since the shape of the TEM-cell is like the swelled coaxial transmission line. Since the swelled part of the coaxial line, TEM-cell, is designed and constructed to maintain the original characteristic of coaxial cable, our measurement setup can be considered to be the situation that a radiation source is placed between the inner conductor and the outer conductor of the bulged coaxial line. Therefore, the radiated electromagnetic energy is coupled to the TEM-cell and the coupled signal flows to the ends of the TEM-cell. TEM-cell has two ends, where one is terminated by 50-ohm termination and the other is connected to the port 1 of the network analyzer. A half of the electromagnetic energy radiated from microstrip line structures is appeared on the network analyzer by the form of S12. Although the characteristic of the TEM-cell to measure the radiated power from the radiation source placed in the TEM-cell must be determined, the measured results by this measurement setup makes it possible to relatively compare the radiated emission from the different microstrip structure.

For the numerical electromagnetic simulation of the radiated emission, the radiation loss (RL) was calculated using commercial electromagnetic field solver based on MoM, HP Momentum. Taking scattering matrix from the MoM simulation, the radiation loss is obtained following the equation, $RL = 1 - |S_{11}|^2 - |S_{21}|^2$. Since the PCB is enclosed by the shielded metallic case of the digital system, the radiation pattern is not important parameter for the evaluation of the radiated emission from signal trace on PCB. Therefore, we employed the radiation loss to compare the microstrip line structure in terms of the electromagnetic radiation.

![Figure 2. Experimental Setup for the measurement of radiated emission from the microstrip trace on PCB.](image)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ws</th>
<th>S</th>
<th>Wg</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>A2</td>
<td>5</td>
<td>10</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>A3</td>
<td>5</td>
<td>25</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>A4</td>
<td>5</td>
<td>50</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>B1</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>B2</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>B3</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>B4</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>200</td>
</tr>
<tr>
<td>D1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 1. Design parameters of the test printed circuit board. (unit: mil). For test samples (D1-D3), a 20mil X 150mil slot is designed on the ground plane under the signal trace to measure the effect of the ground slot on the radiated emission. The length of the microstrip line on test PCB is fixed to be 10 cm.

![Figure 3.](image)

(a) The simulated radiation power from the microstrip line on PCB with the ground fence and via, depending on the spacing (S) between the strip line and the guard fence.

(b) Measured radiated emission from the test PCB for sample A1-A4. The radiated emission was measured using a TEM cell and a network analyzer. The lowest one is from A1 (s=5mil) and the highest one is from A4 (s=50mil). The trend of the measured radiated emission agrees well with the calculated result.
Results & Discussion

It is demonstrated that the low-radiation transmission line structure is useful to reduce the radiated emission from the high-speed digital PCB. Its performance was evaluated by using the experimental measurement. Its inherent less leaky propagation property works well at discontinuity on the ground plane such as slot for EMI reduction. The radiated emission was also measure by TEM -Cell and Network Analyzer, as previously presented. The radiation power from signal trace on the PCB placed in shielded structure (TEM-Cell) is proportional to $S/12$ read by the network analyzer, which is presented at Fig. 3, 4, and 6. The spikes and peaks in measured data are caused by the resonance of the TEM-cell.

By observing the measured and the calculated results, the ground guard fence is most effective when it is placed closely to signal trace (small S), as shown in Figure 3. Especially, the effect of the design parameter S on the reduction of the radiated emission is significant near 1GHz in both of the numerical and experimental results shown in Fig. 3. The maximum difference between the smallest and the largest radiated emission is larger than 10dB, which means that the A1 radiates nearly one-third of the radiation from the A4. From the experimental and numerical analysis, the ground guard trace is recommended to be close to signal trace (small S) to reduce the electromagnetic radiation. The space (S) between guard trace and signal trace seems to be important design parameter for ground guard fence. While Fig.3 showed the effect of the design parameter S,
Fig. 4 presents the effect of the interval of the grounded via on the radiated emission. For the microstrip line (B's in Table 1) for the numerical MoM simulation and the TEM-cell measurement, the fixed \(W_g, W_s, \) and \(S \) are used. While \(S \) is significant parameter, the interval of the via \(d \) is considered to be not a significant parameter affecting the radiated emission.

From Fig. 5, it is also found that the microstrip line over the ground slot suffers from large amount of the radiated emission problem. While Fig. 5 (a) shows the radiation power from the microstrip line on solid ground plane, Fig. 5 (b) presents the radiation power from the microstrip line on the slotted ground plane. Two microstrip lines used in anechoic chamber measurement shown in Fig. 5 are fed by 130 MHz digital clock driver. At the second harmonic frequency, 260 MHz, the largest radiation happened. At 260 MHz, the difference of the radiated emission between the solid and slotted ground plane microstrip line is more than 22dB. From the measured results, the slot on the ground plane makes the radiation from the microstrip line ten times.

To reduce the radiation in the presence of the slot on the ground plane, we employed the ground guard fence and the grounded via. Measured radiation power shown in Fig. 6 presents the effect of the ground guard fence on the suppression of the radiated emission. As shown in Fig. 6, the ground guard fence without grounded via does not work well for the emission reduction. Over the whole frequency range, the radiated emission is reduced significantly using the ground guard fence with properly grounded vias.

Conclusion

We have successfully demonstrated the low-radiation transmission line structure for the high-speed digital PCB and evaluated its performance by using the TEM-cell measurement and the MoM electromagnetic numerical simulation. Its inherent less leaky propagation property works well in the presence of the discontinuity in the ground plane such as slot for the emission reduction.

References

HFSS 视频培训课程推荐

HFSS 软件是当前最流行的微波无源器件和天线设计软件，易迪拓培训(www.edatop.com)是国内最专业的微波、射频和天线设计培训机构。

为帮助工程师能够更好、更快地学习掌握 HFSS 的设计应用，易迪拓培训特邀李明洋老师主讲了多套 HFSS 视频培训课程。李明洋老师具有丰富的工程设计经验，曾编著出版了《HFSS 电磁仿真设计应用详解》、《HFSS 天线设计》等多本 HFSS 专业图书。视频课程，专家讲解，直观易学，是您学习 HFSS 的最佳选择。

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程，是迄今国内最全面、最专业的 HFSS 培训教程套装，可以帮助您从零开始，全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装，更可超值赠送 3 个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的 HFSS 学习更加轻松顺畅…

课程网址：http://www.edatop.com/peixun/hfss/11.html

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书，课程从基础讲起，内容由浅入深，理论介绍和实际操作讲解相结合，全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程，可以帮助您快速学习掌握如何使用 HFSS 设计天线，让天线设计不再难…

课程网址：http://www.edatop.com/peixun/hfss/122.html

更多 HFSS 视频培训课程：

- 两周学会 HFSS —— 中文视频培训课程
 课程从零讲起，通过两周的课程学习，可以帮助您快速入门，自学掌握 HFSS，是 HFSS 初学者的最好课程，网址：http://www.edatop.com/peixun/hfss/1.html

- HFSS 微波器件仿真设计实例 —— 中文视频教程
 HFSS 进阶培训课程，通过十个 HFSS 仿真设计实例，带您更深入学习 HFSS 的实际应用，掌握 HFSS 高级设置和应用技巧，网址：http://www.edatop.com/peixun/hfss/3.html

- HFSS 天线设计入门 —— 中文视频教程
 HFSS 是天线设计的王者，该教程全面解析了天线的基础知识、HFSS 天线设计流程和详细操作设置，让 HFSS 天线设计不再难，网址：http://www.edatop.com/peixun/hfss/4.html

- 更多 HFSS 培训课程，敬请浏览：http://www.edatop.com/peixun/hfss
关于易迪拓培训:

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，一直致力于微波、射频、天线设计人才的培养；后于2006年整合合并微波EDA网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计相关培训课程和ADS、HFSS等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名企业，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

我们的课程优势:

※ 成立于2004年，10多年丰富的行业经验
※ 一直专注于微波射频和天线设计工程师的培养，更了解该行业对人才的要求
※ 视频课程，既能达到现场培训的效果，又能免除舟车劳顿的辛苦，学习工作两不误
※ 经验丰富的一线资深工程师讲授，结合实际工程案例，直观、实用、易学

联系我们:

※ 易迪拓培训官网：http://www.edatop.com
※ 微波EDA网：http://www.mweda.com
※ 官方淘宝店：http://shop36920890.taobao.com